Gathering detailed insights and metrics for @llamafarm/llamafarm
Gathering detailed insights and metrics for @llamafarm/llamafarm
Gathering detailed insights and metrics for @llamafarm/llamafarm
Gathering detailed insights and metrics for @llamafarm/llamafarm
npm install @llamafarm/llamafarm
Typescript
Module System
Min. Node Version
Node Version
NPM Version
Cumulative downloads
Total Downloads
Last Day
0%
NaN
Compared to previous day
Last Week
0%
NaN
Compared to previous week
Last Month
0%
NaN
Compared to previous month
Last Year
0%
NaN
Compared to previous year
18
Deploy AI models, agents, and databases into single deployable binaries - no cloud required.
1npm install -g @llamafarm/llamafarm
1# Deploy a model 2llamafarm plant llama3-8b 3 4# Deploy with optimization 5llamafarm plant llama3-8b --optimize 6 7# Deploy to specific target 8llamafarm plant mistral-7b --target raspberry-pi 9 10# Development/Testing (no model download) 11llamafarm plant llama3-8b --mock
1# 1. Plant - Configure your AI deployment 2llamafarm plant llama3-8b \ 3 --device mac-arm \ 4 --agent chat-assistant \ 5 --rag \ 6 --database vector 7 8# 2. Bale - Compile to single binary 9llamafarm bale ./.llamafarm/llama3-8b \ 10 --device mac-arm \ 11 --optimize 12 13# 3. Harvest - Deploy anywhere 14llamafarm harvest llama3-8b-mac-arm-v1.0.0.bin --run 15 16# Or just copy and run directly (no dependencies needed!) 17./llama3-8b-mac-arm-v1.0.0.bin
plant
Deploy a model to create a standalone binary.
1llamafarm plant <model> [options] 2 3Options: 4 --target <platform> Target platform (mac, linux, windows, raspberry-pi) 5 --optimize Enable size optimization 6 --agent <name> Include an agent 7 --rag Enable RAG pipeline 8 --database <type> Include database (vector, sqlite)
1# Basic deployment 2llamafarm plant llama3-8b 3 4# Deploy with RAG and vector database 5llamafarm plant mixtral-8x7b --rag --database vector 6 7# Deploy optimized for Raspberry Pi 8llamafarm plant llama3-8b --target raspberry-pi --optimize 9 10# Deploy with custom agent 11llamafarm plant llama3-8b --agent customer-service
bale
🎯 The Baler - Compile your deployment into a single executable binary.
1llamafarm bale <project-dir> [options] 2 3Options: 4 --device <platform> Target platform (mac, linux, windows, raspberry-pi) 5 --output <path> Output binary path 6 --optimize <level> Optimization level (none, standard, max) 7 --sign Sign the binary for distribution 8 --compress Extra compression (slower but smaller)
The Baler packages everything into a single binary:
Supported Platforms:
mac
/ mac-arm
/ mac-intel
- macOS with Metal accelerationlinux
/ linux-arm
- Linux with CUDA supportwindows
- Windows with DirectML/CUDAraspberry-pi
- Optimized for ARM devicesjetson
- NVIDIA Jetson edge devicesTypical Binary Sizes:
1# Standard compilation 2llamafarm bale ./.llamafarm/llama3-8b --device mac-arm 3 4# Optimized for size 5llamafarm bale ./.llamafarm/llama3-8b --device raspberry-pi --optimize max --compress 6 7# Enterprise deployment with signing 8llamafarm bale ./.llamafarm/mixtral --device linux --sign --output production.bin
harvest
Deploy and run a compiled binary.
1llamafarm harvest <binary-or-url> [options] 2 3Options: 4 --run Run immediately after deployment 5 --daemon Run as background service 6 --port <number> Override default port 7 --verify Verify binary integrity
Create a llamafarm.yaml
file for advanced configurations:
1name: my-assistant 2base_model: llama3-8b 3plugins: 4 - vector_search 5 - voice_recognition 6data: 7 - path: ./company-docs 8 type: knowledge 9optimization: 10 quantization: int8 11 target_size: 2GB
Then build:
1llamafarm build
For full documentation, visit https://docs.llamafarm.ai
Q: Can I run the binary on a different OS than where I compiled it?
A: No, you need to compile for each target platform. Use --device
to specify the target.
Q: How much disk space do I need? A: During compilation, you need ~3x the final binary size. The final binary is typically 4-8GB for 7B models.
Q: Can I update the model without recompiling? A: No, the model is embedded in the binary. This ensures zero dependencies but means updates require recompilation.
Q: Does the binary need internet access? A: No! Everything runs completely offline once deployed.
MIT © LLaMA Farm Team
No vulnerabilities found.
No security vulnerabilities found.