Gathering detailed insights and metrics for braces
Gathering detailed insights and metrics for braces
Gathering detailed insights and metrics for braces
Gathering detailed insights and metrics for braces
is-glob
Returns `true` if the given string looks like a glob pattern or an extglob pattern. This makes it easy to create code that only uses external modules like node-glob when necessary, resulting in much faster code execution and initialization time, and a bet
is-extglob
Returns true if a string has an extglob.
@types/braces
TypeScript definitions for braces
expand-braces
Braces expansion for arrays of patterns.
Faster brace expansion for node.js. Besides being faster, braces is not subject to DoS attacks like minimatch, is more accurate, and has more complete support for Bash 4.3.
npm install braces
Typescript
Module System
Min. Node Version
Node Version
NPM Version
99.7
Supply Chain
100
Quality
79
Maintenance
100
Vulnerability
100
License
JavaScript (100%)
Total Downloads
16,324,845,754
Last Day
15,706,822
Last Week
85,411,811
Last Month
341,790,697
Last Year
3,725,458,054
MIT License
237 Stars
251 Commits
69 Forks
11 Watchers
1 Branches
17 Contributors
Updated on Apr 03, 2025
Minified
Minified + Gzipped
Latest Version
3.0.3
Package Id
braces@3.0.3
Unpacked Size
43.59 kB
Size
13.64 kB
File Count
10
NPM Version
10.7.0
Node Version
20.12.1
Published on
May 21, 2024
Cumulative downloads
Total Downloads
Last Day
14.7%
15,706,822
Compared to previous day
Last Week
12%
85,411,811
Compared to previous week
Last Month
0.1%
341,790,697
Compared to previous month
Last Year
15.8%
3,725,458,054
Compared to previous year
1
4
Bash-like brace expansion, implemented in JavaScript. Safer than other brace expansion libs, with complete support for the Bash 4.3 braces specification, without sacrificing speed.
Please consider following this project's author, Jon Schlinkert, and consider starring the project to show your :heart: and support.
Install with npm:
1$ npm install --save braces
See the changelog for details.
Brace patterns make globs more powerful by adding the ability to match specific ranges and sequences of characters.
a/{b,c}/d
=> ['a/b/d', 'a/c/d']
{01..03}
=> ['01', '02', '03']
{2..10..2}
=> ['2', '4', '6', '8', '10']
The main export is a function that takes one or more brace patterns
and options
.
1const braces = require('braces'); 2// braces(patterns[, options]); 3 4console.log(braces(['{01..05}', '{a..e}'])); 5//=> ['(0[1-5])', '([a-e])'] 6 7console.log(braces(['{01..05}', '{a..e}'], { expand: true })); 8//=> ['01', '02', '03', '04', '05', 'a', 'b', 'c', 'd', 'e']
By default, brace patterns are compiled into strings that are optimized for creating regular expressions and matching.
Compiled
1console.log(braces('a/{x,y,z}/b')); 2//=> ['a/(x|y|z)/b'] 3console.log(braces(['a/{01..20}/b', 'a/{1..5}/b'])); 4//=> [ 'a/(0[1-9]|1[0-9]|20)/b', 'a/([1-5])/b' ]
Expanded
Enable brace expansion by setting the expand
option to true, or by using braces.expand() (returns an array similar to what you'd expect from Bash, or echo {1..5}
, or minimatch):
1console.log(braces('a/{x,y,z}/b', { expand: true })); 2//=> ['a/x/b', 'a/y/b', 'a/z/b'] 3 4console.log(braces.expand('{01..10}')); 5//=> ['01','02','03','04','05','06','07','08','09','10']
Expand lists (like Bash "sets"):
1console.log(braces('a/{foo,bar,baz}/*.js')); 2//=> ['a/(foo|bar|baz)/*.js'] 3 4console.log(braces.expand('a/{foo,bar,baz}/*.js')); 5//=> ['a/foo/*.js', 'a/bar/*.js', 'a/baz/*.js']
Expand ranges of characters (like Bash "sequences"):
1console.log(braces.expand('{1..3}')); // ['1', '2', '3'] 2console.log(braces.expand('a/{1..3}/b')); // ['a/1/b', 'a/2/b', 'a/3/b'] 3console.log(braces('{a..c}', { expand: true })); // ['a', 'b', 'c'] 4console.log(braces('foo/{a..c}', { expand: true })); // ['foo/a', 'foo/b', 'foo/c'] 5 6// supports zero-padded ranges 7console.log(braces('a/{01..03}/b')); //=> ['a/(0[1-3])/b'] 8console.log(braces('a/{001..300}/b')); //=> ['a/(0{2}[1-9]|0[1-9][0-9]|[12][0-9]{2}|300)/b']
See fill-range for all available range-expansion options.
Steps, or increments, may be used with ranges:
1console.log(braces.expand('{2..10..2}')); 2//=> ['2', '4', '6', '8', '10'] 3 4console.log(braces('{2..10..2}')); 5//=> ['(2|4|6|8|10)']
When the .optimize method is used, or options.optimize is set to true, sequences are passed to to-regex-range for expansion.
Brace patterns may be nested. The results of each expanded string are not sorted, and left to right order is preserved.
"Expanded" braces
1console.log(braces.expand('a{b,c,/{x,y}}/e')); 2//=> ['ab/e', 'ac/e', 'a/x/e', 'a/y/e'] 3 4console.log(braces.expand('a/{x,{1..5},y}/c')); 5//=> ['a/x/c', 'a/1/c', 'a/2/c', 'a/3/c', 'a/4/c', 'a/5/c', 'a/y/c']
"Optimized" braces
1console.log(braces('a{b,c,/{x,y}}/e')); 2//=> ['a(b|c|/(x|y))/e'] 3 4console.log(braces('a/{x,{1..5},y}/c')); 5//=> ['a/(x|([1-5])|y)/c']
Escaping braces
A brace pattern will not be expanded or evaluted if either the opening or closing brace is escaped:
1console.log(braces.expand('a\\{d,c,b}e')); 2//=> ['a{d,c,b}e'] 3 4console.log(braces.expand('a{d,c,b\\}e')); 5//=> ['a{d,c,b}e']
Escaping commas
Commas inside braces may also be escaped:
1console.log(braces.expand('a{b\\,c}d')); 2//=> ['a{b,c}d'] 3 4console.log(braces.expand('a{d\\,c,b}e')); 5//=> ['ad,ce', 'abe']
Single items
Following bash conventions, a brace pattern is also not expanded when it contains a single character:
1console.log(braces.expand('a{b}c')); 2//=> ['a{b}c']
Type: Number
Default: 10,000
Description: Limit the length of the input string. Useful when the input string is generated or your application allows users to pass a string, et cetera.
1console.log(braces('a/{b,c}/d', { maxLength: 3 })); //=> throws an error
Type: Boolean
Default: undefined
Description: Generate an "expanded" brace pattern (alternatively you can use the braces.expand()
method, which does the same thing).
1console.log(braces('a/{b,c}/d', { expand: true })); 2//=> [ 'a/b/d', 'a/c/d' ]
Type: Boolean
Default: undefined
Description: Remove duplicates from the returned array.
Type: Number
Default: 1000
Description: To prevent malicious patterns from being passed by users, an error is thrown when braces.expand()
is used or options.expand
is true and the generated range will exceed the rangeLimit
.
You can customize options.rangeLimit
or set it to Inifinity
to disable this altogether.
Examples
1// pattern exceeds the "rangeLimit", so it's optimized automatically 2console.log(braces.expand('{1..1000}')); 3//=> ['([1-9]|[1-9][0-9]{1,2}|1000)'] 4 5// pattern does not exceed "rangeLimit", so it's NOT optimized 6console.log(braces.expand('{1..100}')); 7//=> ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100']
Type: Function
Default: undefined
Description: Customize range expansion.
Example: Transforming non-numeric values
1const alpha = braces.expand('x/{a..e}/y', { 2 transform(value, index) { 3 // When non-numeric values are passed, "value" is a character code. 4 return 'foo/' + String.fromCharCode(value) + '-' + index; 5 }, 6}); 7console.log(alpha); 8//=> [ 'x/foo/a-0/y', 'x/foo/b-1/y', 'x/foo/c-2/y', 'x/foo/d-3/y', 'x/foo/e-4/y' ]
Example: Transforming numeric values
1const numeric = braces.expand('{1..5}', { 2 transform(value) { 3 // when numeric values are passed, "value" is a number 4 return 'foo/' + value * 2; 5 }, 6}); 7console.log(numeric); 8//=> [ 'foo/2', 'foo/4', 'foo/6', 'foo/8', 'foo/10' ]
Type: Boolean
Default: undefined
Description: In regular expressions, quanitifiers can be used to specify how many times a token can be repeated. For example, a{1,3}
will match the letter a
one to three times.
Unfortunately, regex quantifiers happen to share the same syntax as Bash lists
The quantifiers
option tells braces to detect when regex quantifiers are defined in the given pattern, and not to try to expand them as lists.
Examples
1const braces = require('braces'); 2console.log(braces('a/b{1,3}/{x,y,z}')); 3//=> [ 'a/b(1|3)/(x|y|z)' ] 4console.log(braces('a/b{1,3}/{x,y,z}', { quantifiers: true })); 5//=> [ 'a/b{1,3}/(x|y|z)' ] 6console.log(braces('a/b{1,3}/{x,y,z}', { quantifiers: true, expand: true })); 7//=> [ 'a/b{1,3}/x', 'a/b{1,3}/y', 'a/b{1,3}/z' ]
Type: Boolean
Default: undefined
Description: Do not strip backslashes that were used for escaping from the result.
Brace expansion is a type of parameter expansion that was made popular by unix shells for generating lists of strings, as well as regex-like matching when used alongside wildcards (globs).
In addition to "expansion", braces are also used for matching. In other words:
There are two main types of brace expansion:
{a,b,c}
a{1..3}b
. Optionally, a third argument may be passed to define a "step" or increment to use: a{1..100..10}b
. These are also sometimes referred to as "ranges".Here are some example brace patterns to illustrate how they work:
Sets
{a,b,c} => a b c
{a,b,c}{1,2} => a1 a2 b1 b2 c1 c2
Sequences
{1..9} => 1 2 3 4 5 6 7 8 9
{4..-4} => 4 3 2 1 0 -1 -2 -3 -4
{1..20..3} => 1 4 7 10 13 16 19
{a..j} => a b c d e f g h i j
{j..a} => j i h g f e d c b a
{a..z..3} => a d g j m p s v y
Combination
Sets and sequences can be mixed together or used along with any other strings.
{a,b,c}{1..3} => a1 a2 a3 b1 b2 b3 c1 c2 c3
foo/{a,b,c}/bar => foo/a/bar foo/b/bar foo/c/bar
The fact that braces can be "expanded" from relatively simple patterns makes them ideal for quickly generating test fixtures, file paths, and similar use cases.
In addition to expansion, brace patterns are also useful for performing regular-expression-like matching.
For example, the pattern foo/{1..3}/bar
would match any of following strings:
foo/1/bar
foo/2/bar
foo/3/bar
But not:
baz/1/qux
baz/2/qux
baz/3/qux
Braces can also be combined with glob patterns to perform more advanced wildcard matching. For example, the pattern */{1..3}/*
would match any of following strings:
foo/1/bar
foo/2/bar
foo/3/bar
baz/1/qux
baz/2/qux
baz/3/qux
Although brace patterns offer a user-friendly way of matching ranges or sets of strings, there are also some major disadvantages and potential risks you should be aware of.
"brace bombs"
For a more detailed explanation with examples, see the geometric complexity section.
Jump to the performance section to see how Braces solves this problem in comparison to other libraries.
At minimum, brace patterns with sets limited to two elements have quadradic or O(n^2)
complexity. But the complexity of the algorithm increases exponentially as the number of sets, and elements per set, increases, which is O(n^c)
.
For example, the following sets demonstrate quadratic (O(n^2)
) complexity:
{1,2}{3,4} => (2X2) => 13 14 23 24
{1,2}{3,4}{5,6} => (2X2X2) => 135 136 145 146 235 236 245 246
But add an element to a set, and we get a n-fold Cartesian product with O(n^c)
complexity:
{1,2,3}{4,5,6}{7,8,9} => (3X3X3) => 147 148 149 157 158 159 167 168 169 247 248
249 257 258 259 267 268 269 347 348 349 357
358 359 367 368 369
Now, imagine how this complexity grows given that each element is a n-tuple:
{1..100}{1..100} => (100X100) => 10,000 elements (38.4 kB)
{1..100}{1..100}{1..100} => (100X100X100) => 1,000,000 elements (5.76 MB)
Although these examples are clearly contrived, they demonstrate how brace patterns can quickly grow out of control.
More information
Interested in learning more about brace expansion?
Braces is not only screaming fast, it's also more accurate the other brace expansion libraries.
Fortunately there is a solution to the "brace bomb" problem: don't expand brace patterns into an array when they're used for matching.
Instead, convert the pattern into an optimized regular expression. This is easier said than done, and braces is the only library that does this currently.
The proof is in the numbers
Minimatch gets exponentially slower as patterns increase in complexity, braces does not. The following results were generated using braces()
and minimatch.braceExpand()
, respectively.
Pattern | braces | [minimatch][] |
---|---|---|
{1..9007199254740991} [^1] | 298 B (5ms 459μs) | N/A (freezes) |
{1..1000000000000000} | 41 B (1ms 15μs) | N/A (freezes) |
{1..100000000000000} | 40 B (890μs) | N/A (freezes) |
{1..10000000000000} | 39 B (2ms 49μs) | N/A (freezes) |
{1..1000000000000} | 38 B (608μs) | N/A (freezes) |
{1..100000000000} | 37 B (397μs) | N/A (freezes) |
{1..10000000000} | 35 B (983μs) | N/A (freezes) |
{1..1000000000} | 34 B (798μs) | N/A (freezes) |
{1..100000000} | 33 B (733μs) | N/A (freezes) |
{1..10000000} | 32 B (5ms 632μs) | 78.89 MB (16s 388ms 569μs) |
{1..1000000} | 31 B (1ms 381μs) | 6.89 MB (1s 496ms 887μs) |
{1..100000} | 30 B (950μs) | 588.89 kB (146ms 921μs) |
{1..10000} | 29 B (1ms 114μs) | 48.89 kB (14ms 187μs) |
{1..1000} | 28 B (760μs) | 3.89 kB (1ms 453μs) |
{1..100} | 22 B (345μs) | 291 B (196μs) |
{1..10} | 10 B (533μs) | 20 B (37μs) |
{1..3} | 7 B (190μs) | 5 B (27μs) |
When you need expansion, braces is still much faster.
(the following results were generated using braces.expand()
and minimatch.braceExpand()
, respectively)
Pattern | braces | [minimatch][] |
---|---|---|
{1..10000000} | 78.89 MB (2s 698ms 642μs) | 78.89 MB (18s 601ms 974μs) |
{1..1000000} | 6.89 MB (458ms 576μs) | 6.89 MB (1s 491ms 621μs) |
{1..100000} | 588.89 kB (20ms 728μs) | 588.89 kB (156ms 919μs) |
{1..10000} | 48.89 kB (2ms 202μs) | 48.89 kB (13ms 641μs) |
{1..1000} | 3.89 kB (1ms 796μs) | 3.89 kB (1ms 958μs) |
{1..100} | 291 B (424μs) | 291 B (211μs) |
{1..10} | 20 B (487μs) | 20 B (72μs) |
{1..3} | 5 B (166μs) | 5 B (27μs) |
If you'd like to run these comparisons yourself, see test/support/generate.js.
Install dev dependencies:
1npm i -d && npm benchmark
Braces is more accurate, without sacrificing performance.
1● expand - range (expanded) 2 braces x 53,167 ops/sec ±0.12% (102 runs sampled) 3 minimatch x 11,378 ops/sec ±0.10% (102 runs sampled) 4● expand - range (optimized for regex) 5 braces x 373,442 ops/sec ±0.04% (100 runs sampled) 6 minimatch x 3,262 ops/sec ±0.18% (100 runs sampled) 7● expand - nested ranges (expanded) 8 braces x 33,921 ops/sec ±0.09% (99 runs sampled) 9 minimatch x 10,855 ops/sec ±0.28% (100 runs sampled) 10● expand - nested ranges (optimized for regex) 11 braces x 287,479 ops/sec ±0.52% (98 runs sampled) 12 minimatch x 3,219 ops/sec ±0.28% (101 runs sampled) 13● expand - set (expanded) 14 braces x 238,243 ops/sec ±0.19% (97 runs sampled) 15 minimatch x 538,268 ops/sec ±0.31% (96 runs sampled) 16● expand - set (optimized for regex) 17 braces x 321,844 ops/sec ±0.10% (97 runs sampled) 18 minimatch x 140,600 ops/sec ±0.15% (100 runs sampled) 19● expand - nested sets (expanded) 20 braces x 165,371 ops/sec ±0.42% (96 runs sampled) 21 minimatch x 337,720 ops/sec ±0.28% (100 runs sampled) 22● expand - nested sets (optimized for regex) 23 braces x 242,948 ops/sec ±0.12% (99 runs sampled) 24 minimatch x 87,403 ops/sec ±0.79% (96 runs sampled)
Pull requests and stars are always welcome. For bugs and feature requests, please create an issue.
Running and reviewing unit tests is a great way to get familiarized with a library and its API. You can install dependencies and run tests with the following command:
1$ npm install && npm test
(This project's readme.md is generated by verb, please don't edit the readme directly. Any changes to the readme must be made in the .verb.md readme template.)
To generate the readme, run the following command:
1$ npm install -g verbose/verb#dev verb-generate-readme && verb
Commits | Contributor |
---|---|
197 | jonschlinkert |
4 | doowb |
1 | es128 |
1 | eush77 |
1 | hemanth |
1 | wtgtybhertgeghgtwtg |
Jon Schlinkert
Copyright © 2019, Jon Schlinkert. Released under the MIT License.
This file was generated by verb-generate-readme, v0.8.0, on April 08, 2019.
7.5/10
Summary
Uncontrolled resource consumption in braces
Affected Versions
< 3.0.3
Patched Versions
3.0.3
0/10
Summary
Regular Expression Denial of Service (ReDoS) in braces
Affected Versions
< 2.3.1
Patched Versions
2.3.1
3.7/10
Summary
Regular Expression Denial of Service in braces
Affected Versions
< 2.3.1
Patched Versions
2.3.1
Reason
no dangerous workflow patterns detected
Reason
no binaries found in the repo
Reason
0 existing vulnerabilities detected
Reason
license file detected
Details
Reason
security policy file detected
Details
Reason
Found 6/18 approved changesets -- score normalized to 3
Reason
0 commit(s) and 0 issue activity found in the last 90 days -- score normalized to 0
Reason
detected GitHub workflow tokens with excessive permissions
Details
Reason
dependency not pinned by hash detected -- score normalized to 0
Details
Reason
no effort to earn an OpenSSF best practices badge detected
Reason
project is not fuzzed
Details
Reason
branch protection not enabled on development/release branches
Details
Reason
SAST tool is not run on all commits -- score normalized to 0
Details
Score
Last Scanned on 2025-05-05
The Open Source Security Foundation is a cross-industry collaboration to improve the security of open source software (OSS). The Scorecard provides security health metrics for open source projects.
Learn More